host: Phil Allen

title: **Carrier lifetime effects on thermoelectric efficiency**

abstract

Recent developments in electronic structure algorithms based on the Wannier function interpolation of electronic wave functions have enabled accurate first-principles calculations of electron-phonon interactions and intrinsic carrier lifetimes in the relaxation time approximation. This has supplied the final missing piece of the puzzle for predicting the thermoelectric figure of merit zT=s S^{2} T/k, where the conductivity s, the Seebeck coefficient S, and the total thermal conductivity k now can all be obtained from the density-functional theory (DFT). This opens up exciting possibilities for theoretically understanding and reliably predicting new materials with high values of zT. We will review several examples from our recent work, including a Li-intercalated analogue of lead telluride (Li_{2}TlBi), an intermetallic compound with unexpectedly high value of S (CoSi), and a theoretically predicted full Heusler compound with ultrahigh zT (Ba_{2}BiAu). General factors for high thermoelectric power factors in these compounds include energy dependence of carrier lifetimes for high S, high degeneracy of carrier pockets at the Fermi level, weak electron-phonon scattering for high mobility, and concomitantly low Lorentz numbers for low electronic thermal conductivity.