NEWS: The CQM Distinguished Lecture series has been established  in the Fall of 2015 to bring to Stony Brook University the renown experts in the physics of quantum matter.

The lectures in this series will attract a broad audience of physicists from SBU and BNL,
and SBU graduate students.
Qiang Li, BNL: Chiral Magnetic Effect in Condensed Matters
Sep 29 @ 1:30 pm – 2:30 pm

In relativistic quantum field theory, Dirac fermions in 3D space and time exhibit so-called chiral anomaly – the non-conservation of chiral charge induced by the external gauge fields with non-trivial topology. A consequence of the chiral anomaly is the chiral magnetic effect – the generation of electric current in a magnetic field induced by the chirality imbalance between the left-handed and the right-handed fermions – which was recently discovered in Dirac semimetal ZrTe5 [Q. Li, et al. arXive:1412.6542 (2014), Nature Physics 12, 550 (2016)].The powerful notion of chirality, originally discovered in high-energy and nuclear physics, underpins a wide palette of new and useful phenomena. In this seminar, I will focus on several condensed matter systems explored experimentally. Transport coefficients arising from the chiral anomaly do not break time reversal symmetry, enabling charges, provided chirality is conserved, to travel without resistance, like Cooper pairs in superconductors. In addition, the non-dissipative charge transport supported by the chiral magnetic effect does not require any condensates in the ground state, thus, can be potentially more robust and survive to much higher temperatures. I will try to accentuate the similarities and differences between the chiral magnetic effect and conventional superconductivity. Finally, I will discuss the prospect of harnessing the power of chirality for transmission of information and energy at virtually zero energy loss.